Predicting the Hydrate Stability Zones of Natural Gases Using Artificial Neural Networks
نویسندگان
چکیده
Predicting the Hydrate Stability Zones of Natural Gases Using Artificial Neural Networks — A feed-forward artificial neural network with 19 input variables (temperature, gas hydrate structure, gas composition and inhibitor concentration in aqueous phase) and 35 neurons in single hidden layer has been developed for estimating hydrate dissociation pressures of natural gases in the presence/absence of inhibitor aqueous solutions. The model has been developed using 3296 hydrate dissociation data gathered from the literature. The reliability of the method has been examined using independent experimental data (not used in training and developing the model). It is shown that the results of predictions are in acceptable agreement with experimental data indicating the capability of the artificial neural network for estimating hydrate stability zones of natural gases. Oil & Gas Science and Technology – Rev. IFP, Vol. 62 (2007), No. 5, pp. 701-706 Copyright © 2007, Institut français du pétrole DOI: 10.2516/ogst:2007048 Oil & Gas Science and Technology – Rev. IFP, Vol. 62 (2007), No. 5
منابع مشابه
Prediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks
Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...
متن کاملEvaluation the efficiency of using Artificial Neural Networks in predicting meteorological droughts in north-west of Iran
Drought is one of the most destructive natural disasters in human societies that cause irreparable impacts on agriculture, environment, society and economics. So, awareness of occurrence of droughts can be effective in reducing losses. In this study, in order to modeling and forecasting drought severity in a 37 year time period (1971-2007) in 21 meteorological stations, located in the cold semi...
متن کاملPredicting the buckling Capacity of Steel Cylindrical Shells with Rectangular Stringers under Axial Loading by using Artificial Neural Networks
A parametric study was carried out in order to investigate the buckling capacity of the vertically stiffened cylindrical shells. To this end ANSYS software was used. Cylindrical steel shells with different yield stresses, diameter-to-thickness ratios (D/t) and number of stiffeners were modeled and their buckling capacities were calculated by displacement control nonlinear static analysis. Radi...
متن کاملPredicting the Hydrate Formation Temperature by a New Correlation and Neural Network
Gas hydrates are a costly problem when they plug oil and gas pipelines. The best way to determine the HFT and pressure is to measure these conditions experimentally for every gas system. Since this is not practical in terms of time and money, correlations are the other alternative tools. There are a small number of correlations for specific gravity method to predict the hydrate formation. As th...
متن کاملDelineation of alteration zones based on kriging, artificial neural networks, and concentration–volume fractal modelings in hypogene zone of Miduk porphyry copper deposit, SE Iran
This paper presents a quantitative modeling for delineating alteration zones in the hypogene zone of the Miduk porphyry copper deposit (SE Iran) based on the core drilling data. The main goal of this work was to apply the Ordinary Kriging (OK), Artificial Neural Networks (ANNs), and Concentration-Volume (C-V) fractal modelings on Cu grades to separate different alteration zones. Anisotropy was ...
متن کامل